Table $ 1 $ provides a list of the properties of the Laplace transform. The last property (on convolution) will be proved later. There are other properties, but these are enough for present purposes. Table $ 2 $ summarizes the Laplace transforms of some common functions. We have omitted the factor $ u(t) $ except where it is necessary.
| Table 1: Properties of the Laplace Transform | |
Linearity | $a_1f_1(t) + a_2f_2(t)$ | $a_1F_1(s) + a_2F_2(s)$ |
Scaling | $f (at)$ | ${1 \over a} F \left({s \over a}\right)$ |
Time shift | $f (t − a)u(t − a)$ | $e−asF (s)$ |
Frequency shift | $e^{−at}f (t)$ | $F (s + a)$ |
Time differentiation | $df/dt$ | $sF (s) − f (0_−)$ |
| $df^2/dt^2$ | $s^2F (s) − sf (0_−) − f'(0_−)$ |
Time integration | $\int_0^t f (t) dt$ | ${1 \over s} F(s)$ |
Frequency differentiation | $tf (t)$ | $-{d \over ds} F (s)$ |
Frequency integration | $f (t)/t$ | $\int_s^\infty F (s) ds$ |
Time periodicity | $f (t) = f (t + nT )$ | ${F_1(s) \over 1 − e^{−sT}}$ |
Initial value | $f (0^+)$ | $\lim_{s→∞}sF (s)$ |
Final value | $f (\infty)$ | $\lim_{s→0}sF (s)$ |
Convolution | $f_1(t) ∗ f_2(t)$ | $F_1(s) F_2(s)$ |
Table 2: Laplace transform pairs. |
$δ(t)$ | $1$ |
$u(t)$ | ${1 \over s}$ |
$e^{−at}$ | ${1 \over s+a}$ |
$t$ | ${1 \over s^2}$ |
$t^n$ | ${n! \over s^{n+1}}$ |
$te^{−at}$ | ${1 \over (s+a)^{2}}$ |
$t^n e^{−at}$ | ${n! \over (s+a)^{n+1}}$ |
$\sin ωt$ | ${ω \over s^{2}+ω^{2}}$ |
$\cos ωt$ | ${s \over s^{2}+ω^{2}}$ |
$\sin(ωt + θ)$ | ${s \sin θ + ω \cos θ \over s^{2}+ω^{2}}$ |
$\cos(ωt + θ)$ | ${s cos θ − ω sin θ \over s^{2}+ω^{2}}$ |
$e^{−at} \sin ωt$ | ${ω \over (s+a)^{2}+ω^{2}}$ |
$e^{−at} \cos ωt$ | ${s+a \over (s+a)^{2}+ω^{2}}$ |
Do you want to say or ask something?