Average Power and RMS Values of The Fourier Series

Facebook
Whatsapp
Twitter
LinkedIn
To find the average power absorbed by a circuit due to a periodic excitation, we write the voltage and current in amplitude-phase form as
$$v(t)=V_{\mathrm{dc}}+\sum_{n=1}^{\infty} V_{n} \cos \left(n \omega_{0} t-\theta_{n}\right) \tag{1}$$
$$ i(t)=I_{\mathrm{dc}}+\sum_{m=1}^{\infty} I_{m} \cos \left(m \omega_{0} t-\phi_{m}\right) \tag{2}$$
Following the passive sign convention (Fig. 1), the average power is
Fig. 1: The voltage polarity reference and current reference direction.
$$P=\frac{1}{T} \int_{0}^{T} \text { vi } d t \tag{3}$$
Substituting Eqs. (1) and (1) into Eq. (3) gives
$$\begin{aligned}P=& \frac{1}{T} \int_{0}^{T} V_{\mathrm{dc}} I_{\mathrm{dc}} d t+\sum_{m=1}^{\infty} \frac{I_{m} V_{\mathrm{dc}}}{T} \int_{0}^{T} \cos \left(m \omega_{0} t-\phi_{m}\right) d t \\&+\sum_{n=1}^{\infty} \frac{V_{n} I_{\mathrm{dc}}}{T} \int_{0}^{T} \cos \left(n \omega_{0} t-\theta_{n}\right) d t \\&+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{V_{n} I_{m}}{T} \int_{0}^{T} \cos \left(n \omega_{0} t-\theta_{n}\right) \cos \left(m \omega_{0} t-\phi_{m}\right) d t\end{aligned} \tag{4}$$
Equations from the other pages
$$\begin{array}{c} \int_{0}^{T} \sin n \omega_{0} t d t=0 \quad (A.a) \\ \int_{0}^{T} \cos n \omega_{0} t d t=0 \quad (A.b) \\ \int_{0}^{T} \sin n \omega_{0} t \cos m \omega_{0} t d t=0 \quad (A.c) \\ \int_{0}^{T} \sin n \omega_{0} t \sin m \omega_{0} t d t=0, \quad(m \neq n) \quad (A.d)\\ \int_{0}^{T} \cos n \omega_{0} t \cos m \omega_{0} t d t=0, \quad(m \neq n) \quad (A.e)\\ \int_{0}^{T} \sin ^{2} n \omega_{0} t d t=\frac{T}{2} \quad (A.f)\\ \int_{0}^{T} \cos ^{2} n \omega_{0} t d t=\frac{T}{2} \quad (A.g) \end{array} $$ $$f(t)=a_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right) \tag{B}$$
The second and third integrals vanish, since we are integrating the cosine over its period. According to Eq. (A.e), all terms in the fourth integral are zero when $ m \neq n $. By evaluating the first integral and applying Eq. (A.g) to the fourth integral for the case $ m=n $, we obtain
$$P=V_{\mathrm{dc}} I_{\mathrm{dc}}+\frac{1}{2} \sum_{n=1}^{\infty} V_{n} I_{n} \cos \left(\theta_{n}-\phi_{n}\right) \tag{5}$$
This shows that in average-power calculation involving periodic voltage and current, the total average power is the sum of the average powers in each harmonically related voltage and current. Given a periodic function $ f(t) $, its rms value (or the effective value) is given by
$$F_{\text {mas }}=\sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) d t} \tag{6}$$
Substituting $ f(t) $ in Eq. (B) into Eq. (6) and noting that $ (a+b)^{2}=a^{2}+2 a b+b^{2} $, we obtain
$$\begin{aligned}F_{\mathrm{ms}}^{2}=& \frac{1}{T} \int_{0}^{T}\left[a_{0}^{2}+2 \sum_{n=1}^{\infty} a_{0} A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right)\right.\\&\left.+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n} A_{m} \cos \left(n \omega_{0} t+\phi_{n}\right) \cos \left(m \omega_{0} t+\phi_{m}\right)\right] d t \\=& \frac{1}{T} \int_{0}^{T} a_{0}^{2} d t+2 \sum_{n=1}^{\infty} a_{0} A_{n} \frac{1}{T} \int_{0}^{T} \cos \left(n \omega_{0} t+\phi_{n}\right) d t \\&+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n} A_{m} \frac{1}{T} \int_{0}^{T} \cos \left(n \omega_{0} t+\phi_{n}\right) \cos \left(m \omega_{0} t+\phi_{m}\right) d t\end{aligned} \tag{7}$$
Distinct integers $ n $ and $ m $ have been introduced to handle the product of the two series summations. Using the same reasoning as above, we get
$$F_{\mathrm{rms}}^{2}=a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}$$
or
$$F_{\text {rms }}=\sqrt{a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty} A_{n}^{2}} \tag{8}$$
In terms of Fourier coefficients $ a_{n} $ and $ b_{n} $, Eq. (8) may be written as
$$F_{\text {rms }}=\sqrt{a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)} \tag{9}$$
If $ f(t) $ is the current through a resistor $ R $, then the power dissipated in the resistor is
$$P=R F_{\mathrm{mms}}^{2} \tag{10}$$
Or if $ f(t) $ is the voltage across a resistor $ R $, the power dissipated in the resistor is
$$P=\frac{F_{\mathrm{rms}}^{2}}{R} \tag{11}$$
One can avoid specifying the nature of the signal by choosing a $ 1-\Omega $ resistance. The power dissipated by the $ 1-\Omega $ resistance is
$$P_{1 \Omega}=F_{\mathrm{ms}}^{2}=a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \tag{12}$$
This result is known as Parseval's theorem. Notice that $ a_{0}^{2} $ is the power in the dc component, while $ 1 / 2\left(a_{n}^{2}+b_{n}^{2}\right) $ is the ac power in the $ n $th harmonic. Thus,
Parseval's theorem states that the average power in a periodic signal is the sum of the average power in its dc component and the average powers in its harmonics.
Example 1: Determine the average power supplied to the circuit in Fig. $ 2 $ if
$$ i(t)=2+10 \cos \left(t+10^{\circ}\right)+6 \cos \left(3 t+35^{\circ}\right) \mathrm{A} $$
Fig. 2: For Example 1.
Solution: The input impedance of the network is
$$\mathbf{Z}=10 \| \frac{1}{j 2 \omega}=\frac{10(1 / j 2 \omega)}{10+1 / j 2 \omega}=\frac{10}{1+j 20 \omega}$$
Hence,
$$\mathbf{V}=\mathbf{I Z}=\frac{10 \mathbf{I}}{\sqrt{1+400 \omega^{2}} \angle{ \tan ^{-1} 20 \omega}}$$
For the dc component, $ \omega=0 $,
$$\mathbf{I}=2 \mathrm{~A} \quad \Longrightarrow \quad \mathbf{V}=10(2)=20 \mathrm{~V}$$
This is expected, because the capacitor is an open circuit to dc and the entire 2-A current flows through the resistor. For $ \omega=1 \mathrm{rad} / \mathrm{s} $,
$$\begin{aligned}\mathbf{I}=10 \angle 10^{\circ} \quad \Longrightarrow \quad \mathbf{V} &=\frac{10\left(10 \angle 10^{\circ}\right)}{\sqrt{1+400} \angle{ \tan ^{-1} 20}} \\ &=5 \angle-77.14^{\circ}\end{aligned}$$
For $ \omega=3 \mathrm{rad} / \mathrm{s} $,
$$\begin{aligned}\mathbf{I}=6 \angle 45^{\circ} \quad \Longrightarrow \quad \mathbf{V} &=\frac{10\left(6 / 45^{\circ}\right)}{\sqrt{1+3600} \angle{ \tan ^{-1} 60}} \\ &=1 \angle-44.05^{\circ}\end{aligned}$$
Thus, in the time domain,
$$v(t)=20+5 \cos \left(t-77.14^{\circ}\right)+1 \cos \left(3 t-44.05^{\circ}\right) \mathrm{V}$$
We obtain the average power supplied to the circuit by applying Eq. (5), as
$$P=V_{\mathrm{dc}} I_{\mathrm{dc}}+\frac{1}{2} \sum_{n=1}^{\infty} V_{n} I_{n} \cos \left(\theta_{n}-\phi_{n}\right)$$
To get the proper signs of $ \theta_{n} $ and $ \phi_{n} $, we have to compare $ v $ and $ i $ in this example with Eqs. (1) and (2). Thus,
$$\begin{aligned}P=& 20(2)+\frac{1}{2}(5)(10) \cos \left[77.14^{\circ}-\left(-10^{\circ}\right)\right] \\&+\frac{1}{2}(1)(6) \cos \left[44.05^{\circ}-\left(-35^{\circ}\right)\right] \\=& 40+1.247+0.05=41.5 \mathrm{~W}\end{aligned}$$
Alternatively, we can find the average power absorbed by the resistor as
$$\begin{aligned}P &=\frac{V_{\mathrm{dc}}^{2}}{R}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{\left|V_{n}\right|}{R}=\frac{20^{2}}{10}+\frac{1}{2} \cdot \frac{5^{2}}{10}+\frac{1}{2} \cdot \frac{1^{2}}{10} \\&=40+1.25+0.05=41.5 \mathrm{~W}\end{aligned}$$
which is the same as the power supplied, since the capacitor absorbs no average power.

Do you have any questions?

250
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2025 realnfo.com
Privacy Policy