When both the resistor and the inductor are connected in parallel connection and supplied through a voltage source, this is known as a RL parallel circuit. The parallel RL circuit is generally of less interest than the series circuit unless fed by a current source.
Refer to
[Fig. 1].
Fig. 1: Parallel R-L network.
Phasor Notation As shown in
[Fig. 2].
Fig. 2: Applying phasor notation to the network of Fig. 1.
$Y_T$ and $Z_T$
$$\begin{split}
Y_T &= Y_R + Y_L\\
&= G \angle 0^\circ + B_L \angle -90^\circ\\
&= {1 \over 3.33Ω} \angle 0^\circ + {1 \over 2.5Ω} \angle -90^\circ\\
&= 0.3S \angle 0^\circ +0.4S \angle -90^\circ\\
&= 0.3 S - j0.4 S = 0.5S \angle -53.13^\circ\\
Z_T &= { 1 \over Y_T} = { 1 \over 0.5S \angle -53.13^\circ} \\
&= 2Ω \angle 53.13^\circ \\
\end{split}$$
Admittance diagram: As shown in F
[ig. 3].
Fig. 3: Admittance diagram for the parallel R-L network of Fig. 1
Current I
$$\begin{split}
I &= { E \over Z_T} = E Y_T\\
&= (20 V \angle 53.13^\circ)(0.5 S \angle -53.13^\circ) \\
&= 10 A \angle 0^\circ\\
\end{split}$$
$I_R$ and $I_L$
$$\begin{split}
I_R &= { E \angle \theta \over R \angle 0^\circ}= (E \angle \theta)( G \angle 0^\circ)\\
&=(20 V \angle 53.13^\circ)(0.3 S \angle 0^\circ) = 6 A \angle 53.13^\circ\\
I_L &= { E \angle \theta \over X_L \angle 90^\circ} = (E \angle \theta)( B_L \angle -90^\circ)\\
&=(20 V \angle 53.13^\circ)(0.4 S \angle -90^\circ)\\
&= 8 A \angle -36.87^\circ\\
\end{split}$$
Kirchhoff's current law: At node a,
or
$$\begin{split}
I &= I_R + I_L\\
10 A \angle 0^\circ &= 6 A \angle 53.13^\circ + 8 A \angle 36.87^\circ\\
10 A \angle 0^\circ &=10 A \angle 0^\circ
\end{split}$$
Phasor diagram: The phasor diagram of
[Fig. 4] indicates that
the applied voltage E is in phase with the current IR and leads the current $I_L$ by $90^\circ$.
Fig. 4: Phasor diagram for the parallel R-L network
of Fig. 1.
Power: The total power in watts delivered to the circuit is
$$\begin{split}
P_T &= EI \cos \theta_T= (20 V)(10 A) \cos 53.13^\circ \\
&= (200 W)(0.6)= 120 W\\
or \\
P_T &= I^2R = {V_R^2 \over R}= V^2 G\\
&= (20 V)^2(0.3 S) = 120 W
\end{split}$$
Power factor: The power factor of the circuit is
$$F_p = \cos \theta_T = \cos 53.13^\circ \\
= 0.6 \text{lagging}$$
Impedance approach: The current I can also be found by first finding the total impedance of the network:
$$\begin{split}
Z_T &= {Z_RZ_L \over Z_R + Z_L}\\
&= {(3.33 \angle 0^\circ)(2.5 \angle 90^\circ) \over (3.33 \angle 0^\circ)+(2.5 \angle 90^\circ)}\\
&={8.9 \angle 90^\circ \over 4.164 \angle 36.87^\circ}\\
&= 2 Ω \angle 53.13^\circ\\
\end{split}$$
And then, using Ohm's law, we obtain
$$I = {E \over Z_T} = {20V \angle 53.13^\circ \over 2 Ω \angle 53.13^\circ} = 10 A \angle 0^\circ$$
Do you want to say or ask something?