Parallel Resistance across Inductance, Rp
We have derived the equation for $R_p$ in the
topic, which is given as
$$ R_p = { R_l^2 + X^2_L \over R_l} \tag{1}$$
$$ \begin{split}
R_p &= { R_l^2 + X^2_L \over R_l}= R_l + {X^2_L \over R_l }({R_l \over R_l})\\
&= R_l + R_l{X^2_L \over R_l^2 } = R_l + Q^2_l R_l = (1 - Q_l^2)R_l \end{split}$$
For $Q_l \geq 10$, $1 + Q^2_l \approx Q^2_l $ and
$$ \bbox[10px,border:1px solid grey]{R_p = Q^2_l R_l} \tag{2}$$
Substituting $Q_l = { X_L \over R_l}$ into Eq. (2),
$$\begin{split}
R_p &= Q^2_l R_l = ({ X_L \over R_l})^2 R_l\\
&={ X_L^2 \over R_l} = { X_L X_C \over R_l} \\
&= { 2 \pi fL \over R_l( 2 \pi f C)} \end{split}$$
and
$$ \bbox[10px,border:1px solid grey]{R_p = { L \over R_l C}} \tag{3}$$
Do you want to say or ask something?