Linearity property of the Fourier Transform

If $ F_{1}(\omega) $ and $ F_{2}(\omega) $ are the Fourier transforms of $ f_{1}(t) $ and $ f_{2}(t) $, respectively, then
$$\mathcal{F}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega) \tag{1} $$
where $ a_{1} $ and $ a_{2} $ are constants. This property simply states that the Fourier transform of a linear combination of functions is the same as the linear combination of the transforms of the individual functions. The proof of the linearity property in Eq. (1) is straightforward. By definition,
$$\begin{aligned}\mathcal{F}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right] &=\int_{-\infty}^{\infty}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right] e^{-j \omega t} d t \\&=\int_{-\infty}^{\infty} a_{1} f_{1}(t) e^{-j \omega t} d t+\int_{-\infty}^{\infty} a_{2} f_{2}(t) e^{-j \omega t} d t \\&=a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega)\end{aligned} \tag{2}$$
For example, $ \sin \omega_{0} t=\frac{1}{2 j}\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right) $. Using the linearity property,
$$\begin{aligned}F\left[\sin \omega_{0} t\right] &=\frac{1}{2 j}\left[\mathcal{F}\left(e^{j \omega_{0} t}\right)-\mathcal{F}\left(e^{-j \omega_{0} t}\right)\right] \\&=\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]\end{aligned}$$

Do you want to say or ask something?

Only 250 characters are allowed. Remaining: 250
Please login to enter your comments. Login or Signup .
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2023
Privacy Policy